Anterior and superior lateral occipito-temporal cortex responsible for target motion prediction during overt and covert visual pursuit.
نویسندگان
چکیده
In smooth-pursuit eye movements (SPEM) with gain close to one, SPEM should be controlled mainly by prediction of target motion because retinal slip is nearly zero. We investigated the neural mechanisms of visual-target prediction by the three fMRI experiments. (1) Overt pursuit task: subjects pursued a sinusoidally moving target which blinked (blink condition) or did not blink (continuous condition). (2) Covert pursuit task: subjects covertly pursued the same target with eyes gazed at fixation point. (3) Attend-to-stationary target task: subjects brought attention on a stationary target with eyes gazed at fixation point. In the overt pursuit task, the SPEM gain and the delay in the blink condition were not very different from the continuous condition, indicating good prediction of the blinking target motion. Activities in the dorsolateral prefrontal, precentral, medial superior frontal, intraparietal, and lateral occipito-temporal cortexes increased in the blink-continuous subtraction. The V1 activity decreased for this contrast. In the covert pursuit task, only the anterior/superior LOTC activity remained in the blink-continuous subtraction. In the attend-to-stationary target task, the blink-continuous subtraction elicited no activation. Consequently, the a/sLOTC activity is responsible for target prediction rather than motor commands for eye movements or just target blinking such as visual saliency.
منابع مشابه
Relation of cortical areas MT and MST to pursuit eye movements. I. Localization and visual properties of neurons.
1. Among the multiple extrastriate visual areas in monkey cerebral cortex, several areas within the superior temporal sulcus (STS) are selectively related to visual motion processing. In this series of experiments we have attempted to relate this visual motion processing at a neuronal level to a behavior that is dependent on such processing, the generation of smooth-pursuit eye movements. 2. We...
متن کاملSee me, hear me, touch me: multisensory integration in lateral occipital-temporal cortex.
Our understanding of multisensory integration has advanced because of recent functional neuroimaging studies of three areas in human lateral occipito-temporal cortex: superior temporal sulcus, area LO and area MT (V5). Superior temporal sulcus is activated strongly in response to meaningful auditory and visual stimuli, but responses to tactile stimuli have not been well studied. Area LO shows s...
متن کاملThe integration of higher order form and motion by the human brain
Our experience with a dynamic environment has tuned our visual system to use form and motion as complementary sources of information for object recognition. To identify the neural systems involved in integrating form and motion information during dynamic object processing, we used an fMRI adaptation paradigm which factorially manipulated form and motion repetition. Observers were sequentially p...
متن کاملDyslexic children lack word selectivity gradients in occipito-temporal and inferior frontal cortex
fMRI studies using a region-of-interest approach have revealed that the ventral portion of the left occipito-temporal cortex, which is specialized for orthographic processing of visually presented words (and includes the so-called "visual word form area", VWFA), is characterized by a posterior-to-anterior gradient of increasing selectivity for words in typically reading adults, adolescents, and...
متن کاملThe neuronal basis of on-line visual control in smooth pursuit eye movements
Smooth pursuit eye movements allow us to maintain the image of a moving target on the fovea. Smooth pursuit consists of separate phases such as initiation and steady-state. These two phases are supported by different visual-motor mechanisms in cortical areas including the middle temporal (MT), the medial superior temporal (MST) areas and the frontal eye field (FEF). Retinal motion signals are r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Neuroscience research
دوره 54 2 شماره
صفحات -
تاریخ انتشار 2006